You're asking about a complex organic molecule, specifically a thiourea derivative. Here's a breakdown:
**1-[2-(5-fluoro-2-methyl-1H-indol-3-yl)ethyl]-3-(3-fluorophenyl)-1-(3-pyridinylmethyl)thiourea**
* **Thiourea:** The core structure is thiourea, which contains a carbon atom double-bonded to a sulfur atom and single-bonded to two nitrogen atoms.
* **Substituents:** This specific thiourea molecule has several substituents attached to the core thiourea structure:
* **(5-fluoro-2-methyl-1H-indol-3-yl)ethyl:** This is a complex group with:
* **Indole:** A bicyclic aromatic ring system with a nitrogen atom in the five-membered ring.
* **5-fluoro:** A fluorine atom attached to the 5th position on the indole ring.
* **2-methyl:** A methyl group (CH3) attached to the 2nd position on the indole ring.
* **Ethyl:** A two-carbon chain (CH2-CH3) attached to the 3rd position on the indole ring.
* **3-fluorophenyl:** A phenyl ring (benzene ring) with a fluorine atom attached to the 3rd position.
* **3-pyridinylmethyl:** A pyridinyl ring (six-membered ring with a nitrogen atom) with a methylene group (CH2) attached to the 3rd position, which is then connected to the thiourea.
**Importance in Research**
The importance of this specific thiourea molecule depends on the context of the research. However, thioureas in general have a wide range of applications due to their diverse chemical and pharmacological properties. Some potential research areas where this compound could be studied include:
* **Medicinal Chemistry:** Thioureas are known for their biological activity and are often investigated as potential drug candidates. This specific compound might be explored for its:
* **Antimicrobial activity:** Thioureas can inhibit the growth of bacteria and fungi.
* **Anti-inflammatory activity:** They might reduce inflammation.
* **Antioxidant properties:** Thioureas can scavenge free radicals.
* **Material Science:** Thioureas can act as ligands (molecules that bind to metals), which is relevant in areas such as:
* **Catalysis:** Thioureas can bind to metal ions and catalyze chemical reactions.
* **Materials synthesis:** They can be used to create new materials with specific properties.
* **Analytical Chemistry:** Thioureas can be used as:
* **Analytical reagents:** They can react with specific compounds, leading to changes in color or other properties that can be used for detection or quantification.
**Important Note:** It's crucial to know the specific research goal when evaluating the importance of this compound. Without more context, it's impossible to say definitively why it's important.
**To learn more:**
* You can search for publications or databases related to thiourea derivatives.
* You could contact researchers specializing in medicinal chemistry or material science to learn more about their specific applications.
ID Source | ID |
---|---|
PubMed CID | 2157931 |
CHEMBL ID | 1333119 |
CHEBI ID | 115447 |
Synonym |
---|
smr000319875 |
MLS000419202 |
CHEBI:115447 |
1-[2-(5-fluoro-2-methyl-1h-indol-3-yl)ethyl]-3-(3-fluorophenyl)-1-(pyridin-3-ylmethyl)thiourea |
1-[2-(5-fluoro-2-methyl-1h-indol-3-yl)ethyl]-3-(3-fluorophenyl)-1-[(pyridin-3-yl)methyl]thiourea |
AKOS001494751 |
HMS2675J05 |
CHEMBL1333119 |
Q27197298 |
1-[2-(5-fluoro-2-methyl-1h-indol-3-yl)ethyl]-3-(3-fluorophenyl)-1-(3-pyridinylmethyl)thiourea |
Class | Description |
---|---|
thioureas | Compounds of general formula RR'NC(=S)NR''R'''. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, JmjC domain-containing histone demethylation protein 3A | Homo sapiens (human) | Potency | 50.1187 | 0.6310 | 35.7641 | 100.0000 | AID504339 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 10.0000 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 29.0810 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 29.0929 | 0.0008 | 11.3822 | 44.6684 | AID686979 |
Smad3 | Homo sapiens (human) | Potency | 35.4813 | 0.0052 | 7.8098 | 29.0929 | AID588855 |
bromodomain adjacent to zinc finger domain 2B | Homo sapiens (human) | Potency | 31.6228 | 0.7079 | 36.9043 | 89.1251 | AID504333 |
IDH1 | Homo sapiens (human) | Potency | 29.0929 | 0.0052 | 10.8652 | 35.4813 | AID686970 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 39.8107 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
geminin | Homo sapiens (human) | Potency | 29.0929 | 0.0046 | 11.3741 | 33.4983 | AID624296 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 15.8489 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
neuropeptide S receptor isoform A | Homo sapiens (human) | Potency | 10.0000 | 0.0158 | 12.3113 | 615.5000 | AID1461 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 19.9526 | 1.9953 | 25.5327 | 50.1187 | AID624288 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |